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Environmental predictors of 
habitat suitability and occurrence 
of cetaceans in the western North 
Atlantic Ocean
Samuel Chavez-Rosales1, Debra L. Palka2, Lance P. Garrison3 & Elizabeth A. Josephson1

The objective of this study was to identify the main environmental covariates related to the abundance 
of 17 cetacean species/groups in the western North Atlantic Ocean based on generalized additive 
models, to establish a current habitat suitability baseline, and to estimate abundance that incorporates 
habitat characteristics. Habitat models were developed from dedicated sighting survey data collected 
by NOAA- Northeast and Southeast Fisheries Science Centers during July 2010 to August 2013. A group 
of 7 static physiographic characteristics and 9 dynamic environmental covariates were included in the 
models. For the small cetacean models, the explained deviance ranged from 16% to 69%. For the large 
whale models, the explained deviance ranged from 32% to 52.5%. Latitude, sea surface temperature, 
bottom temperature, primary productivity and distance to the coast were the most common covariates 
included and their individual contribution to the deviance explained ranged from 5.9% to 18.5%. The 
habitat-density models were used to produce seasonal average abundance estimates and habitat 
suitability maps that provided a good correspondence with observed sighting locations and historical 
sightings for each species in the study area. Thus, these models, maps and abundance estimates 
established a current habitat characterization of cetacean species in these waters and have the 
potential to be used to support management decisions and conservation measures in a marine spatial 
planning context.

The Northeastern coast of the United States is one of the most populated portions of the country and supports 
some of the highest intensity of shipping, fishing and marine development in the nation. Not only has ocean 
use increased dramatically during the past 40 years, but the underlying marine ecosystem has also experienced 
changes in ocean water temperatures1.

A number of cetacean species listed in the Endangered Species Act (ESA) and protected by the Marine 
Mammal Protection Act (MMPA) are subject to these environmental and anthropogenic pressures2. Cetaceans 
play important roles in the marine ecosystems as predators whose dynamics are associated with the mid-trophic 
levels through trophic linkage3. Consequently, these species not only affect entire food webs, but are also affected 
by the dynamics of the physical and biological environment4,5. Detailed current knowledge of the distributions 
of cetaceans and their suitable habitat is important for the effective management and conservation not only of 
cetacean species but also of entire marine ecosystems3. This is particularly important given the rapidly changing 
oceanic environment in the Northwest Atlantic Ocean off the U.S.6 and the increasing demands for energy pro-
duction that promoted the development of renewable energy areas on the outer continental shelf7.

Results from habitat suitability models, their underlying spatial-temporal density distribution maps and the 
relationships between habitat features and density patterns are a cornerstone to support conservation and man-
agement. For example, they can be used to predict and monitor species’ response to changes in the climate and 
anthropogenic impacts8,9, and generate abundance estimates that support conservation and management10,11. In 
addition, these models have the potential to identify priority conservation areas, and diversity hot or cold-spots12. 
Several U.S. federal agencies require information about spatial-temporal density, habitat, abundance, population 
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size and predictive models for marine protected species to support their environmental compliance docu-
mentation related to the National Environmental Policy Act (NEPA), MMPA and ESA. For example, the U.S. 
Department of Energy and the U.S. Bureau of Ocean Energy Management are working closely with several states, 
to establish offshore renewable energy developments within 50 miles of the eastern U.S. coastline on the outer 
continental shelf7. Other examples are regulations under the MMPA to govern the unintentional taking of marine 
mammal incidental to training and testing activities conducted by the U.S. Navy13. In both of these examples, 
identifying suitable habitat would help constituents to determine how to minimize human and cetacean interac-
tions and an important component of their respective Environmental Impact Statements.

The objective of this study was to provide this background information for the above conservation and man-
agement needs; specifically, to use generalized additive models to establish a current habitat suitability descrip-
tion for cetacean species, to identify the main environmental covariates related to cetacean distribution, and to 
estimate abundance accounting for habitat relationships. Further, and example application of these models in 
conservation and management issues is discussed.

Results
Habitat models.  A total of 103,395 km of track line was divided into 13,792 spatial-temporal cells (3,329 for 
spring, 5,978 for summer, 3,237 for fall and 1,248 for winter) that covered offshore and coastal habitats includ-
ing the renewable energy areas (Fig. 1, Supplementary Table S1 previously reported in Palka et al.)14. A total of 
3,158 sightings of cetacean species/groups were available for 1,413 of these spatial-temporal cells (273 for spring, 
796 for summer, 257 for fall and 87 for winter). The species/groups sightings per season are summarized in 
Supplementary Table S2, (previously reported in Palka et al.)14 and the environmental covariates are summarized 
in Supplementary Table S3. Information related to effort and seasonal sightings were previously reported in Palka 
et al.14.

A total of 19 season/species predictive models were developed, which included 10 single species models using 
data from all seasons combined (spring, summer and fall), 6 species/group models using data from summer 
only, and 3 models for harbour porpoise which had sufficient sample size to develop separate seasonal models 
to explain fine scale seasonal migration for spring, summer and fall. Due to low effort and low animal density 
detected for most of the species, the winter data was not included in the model development, with the exception 
of the model for common bottlenose dolphin where sufficient numbers of animals were detected.

The most parsimonious model for each species included 4–6 different environmental covariates. The total 
deviance explained by the models ranged from 16.2% for the summer model of Atlantic spotted dolphin to 69.3% 
for the summer model of harbour porpoise. Overall, latitude and SST were included in 67% and 61% of the mod-
els respectively, followed by bottom temperature, primary productivity and sea floor slope in 39% of the models. 

Figure 1.  Effort track lines in the AMAPPS study area during 2010–2013, most track lines were surveyed 
multiple times by shipboard and aerial surveys. Renewable energy areas include a 10 km buffer zone.
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The least frequent predictors included in the models were particulate organic carbon and sea surface height 
anomaly both with 5.6%. (Table 1).

Habitat suitability maps generated from the model outputs identified clear differences in the core habitat for 
the species that have the tendency to converge in the same space and time, giving indications of habitat partition 
(Supplementary Figs S1 to S17).

Goodness-of-fit measures of the models were determined to be adequate as evaluated in two ways. First, over-
all the models fitted the input data well according to the Spearman’s rank correlation, mean absolute error, and 
mean absolute percent error statistics, using both the non-zero input data and cross-validation methods (Table 2). 
Second, a comparison of habitat suitability maps to field sighting locations revealed a good correspondence 
between the model predictions and observed data used to develop the models (Supplementary Figs S1 to S17).

Distribution-abundance connection with environmental covariates.  Partial regression smooth 
plots generated by the habitat models provided a good metric of the physical and biological habitat of these 
species, and represent how animal abundance changes relative to its mean in response to changes in each 
model covariate term. For example, the relationship between dolphin abundance and sea surface temperature 
showed well-defined thermal habitats that provide evidence of habitat partitioning (Fig. 2). This is illustrated 
by white-sided and bottlenose dolphins who are found more frequently in cooler waters, peaking at about 10 °C 
and 12 °C, respectively. Common and striped dolphins are found in warmer waters peaking at about 16 °C and 
20 °C, respectively. In contrast, Risso’s dolphins are found most often in the warmest waters that are over 20 °C. 
The partial regression plots of sea surface temperature also provided information on the range of temperatures 
commonly used by the species. For example, common dolphins are found in waters with a wider range of temper-
atures (5–24 °C) in contrast to striped dolphins (14–25 °C).

The habitat covariates in the models were able to capture seasonal movement patterns and fine scale distri-
bution patterns by including not only static covariates, like latitude, but also dynamic environmental covariates 
that change over the seasons and on a finer scale. For example, both humpback and minke whales have similar 
patterns in the partial regression relationships for sea surface temperature (Fig. 2) and latitude (Fig. 3). However, 
the humpback model also includes chlorophyll a and the minke whale model includes particulate organic carbon 
which aggregates phytoplankton, zooplankton, bacteria and detritus, suggesting a difference in trophic relation-
ships and also resulting in very different habitat suitability patterns (Table 1, Supplementary Figs S8 and S10).

Abundance estimates.  Average seasonal abundance estimates derived from the habitat suitability mod-
els for the entire study area for all the cetacean species and species guilds are found in Table 3, these estimates 
were previously reported in Palka et al.14. For species that were detected during spring, summer and fall, various 
distribution and abundance patterns were observed. For the pilot whale, beaked whale, and Kogia groups, the 
abundance estimates were developed for the guild and not for individual species. In addition sightings of Kogia 

SPECIES

Generalized Additive Model Terms Total DE

SST BT PP CHL PIC POC SAL MLD SLA LAT DEPTH SLOPE D2S D125 D200 D1000 te(LAT, BT) %

Atlantic spotted dolphin (summer) 3.59 2.52 3.43 6.66 16.2

Beaked whale, Cuvier’s (summer) 1.13 11.08 10.92 4.08 6.79 34.0

Beaked whale, Sowerby’s (summer) 6.49 1.09 3.54 22.96 7.02 41.1

Beaked whale group (summer) 0.80 13.64 23.11 0.56 38.1

Common bottlenose dolphin 
(spring, summer, fall and winter) 0.4 3.11 1.02 0.19 1.48 2.88 13.22 22.3

Fin whale 7.86 0.98 15.79 10.06 34.7

Harbour porpoise (spring) 2.60 40.87 4.39 2.03 49.9

Harbour porpoise (summer) 1.48 4.70 60.17 2.95 69.3

Harbour porpoise (fall) 2.62 10.80 42.97 10.21 66.6

Humpback whale 9.14 6.48 0.65 9.97 5.66 31.9

Dwarf/Pygmy sperm whale group 
(summer) 1.41 0.57 28.27 0.80 2.65 33.7

Minke whale 5.88 9.59 4.51 10.70 5.65 3.57 39.9

Short/Long-finned pilot whale group 5.76 11.97 6.53 10.21 21.73 56.2

Risso’s dolphin 6.12 5.67 6.39 20.25 11.16 49.6

Sei whale 20.18 3.69 24.76 3.87 52.5

Common dolphin 14.53 9.39 10.53 7.64 42.1

Sperm whale 7.24 10.07 5.35 1.35 9.49 33.5

Striped dolphin (summer) 6.79 41.52 1.39 3.12 52.8

White-sided dolphin 4.38 2.63 2.90 1.02 7.57 18.5

Table 1.  Percent deviance explained (DE) by term for each species model. The data input for the models cover 
spring, summer and fall seasons unless is specified in parenthesis. All the model terms were significant at 
p < 0.05 by a Wald-type test of f = 054.
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Species

Non-Zero Input Data k cross-validation k = 25

RHO MAE MAPE RHO MAE MAPE

Atlantic spotted dolphin 0.273 0.199 87.861 0.113 0.195 86.271

Cuvier’s beaked whale 0.091 0.013 86.030 0.219 0.017 85.129

Sowerby’s beaked whale 0.379 0.003 92.233 0.151 0.004 93.303

Unidentified beaked whales 0.429 0.013 81.191 0.173 0.013 85.211

Common bottlenose dolphin 0.315 0.411 77.602 0.203 0.421 82.069

Fin whale 0.117 0.009 88.725 0.129 0.009 89.992

Harbour porpoise - Fall 0.179 0.038 85.778 0.189 0.047 78.802

Harbour porpoise - Spring 0.242 0.049 87.975 0.175 0.049 87.068

Harbour porpoise - Summer 0.260 0.113 80.405 0.209 0.102 79.875

Humpback whale 0.278 0.003 91.975 0.085 0.004 91.612

Pygmy/dwarf sperm whale 0.404 0.017 82.288 0.203 0.016 82.218

Minke whale 0.500 0.006 94.595 0.087 0.005 95.775

Long/short pilot whale 0.530 0.074 88.925 0.146 0.065 95.085

Risso’s dolphin 0.103 0.054 85.387 0.187 0.052 99.327

Sei whale 0.239 0.004 87.176 0.078 0.004 89.865

Common dolphin 0.192 0.277 104.383 0.183 0.324 105.963

Sperm whale 0.227 0.006 82.018 0.145 0.005 81.383

Striped dolphin 0.290 0.065 76.438 0.235 0.074 128.025

White-sided dolphin 0.314 0.303 86.471 0.064 0.265 92.461

Table 2.  Results of diagnostic tests to evaluate fit of the habitat models. RHO = Spearman’s rank correlation 
coefficient; MAE = Mean absolute error; MAPE = Mean absolute percentage error. Fit threshold values were 
taken from Kinlan et al.49 where: 

= < . = . < = < . = > .
= > = > = > . = < = .
= > = > = > = < = .

RHO: Poor x 0 05 Fair to good 0 05 x 0 3 Excellent x 0 3
MAE: Poor x 1 Fair to good 1 x 0 25 Excellent x 0 25
MAPE: Poor x 150% Fair to good 150% x 50% Excellent x 50%

Figure 2.  Examples of the partial effect of SST (°C) on the changes in abundance relative to its mean for common 
dolphin (CODO), white-sided dolphin (WSDO), common bottlenose dolphin (BODO), Risso’s dolphin 
(GRAM), striped dolphin (STDO), humpback whale (HUWH), minke whale (MIWH), sei whale (SEWH).
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spp., beaked whales and striped dolphins occurred in habitats further offshore in regions only the shipboard sur-
veys were able to access during summer. Consequently, the estimate of abundance for these species/groups only 
represents the summer season.

Robustness validation.  The models were also shown to be robust as defined by comparing the pre-
dicted model values to the data that were collected at times different than the data used to develop the models. 
Specifically, a total of 386 sightings were not included in the development of the models for humpback whale, fin 
whale, sperm whale, short/long-finned pilot whale, Risso’s dolphin, common dolphin and common bottlenose 
dolphin collected during spring 2014, were located within the core habitat regions as predicted by the habitat 
models when applied to the values of the covariates for the spring of 2014 (Supplementary Figs S18 to S24). In 
further analysis only for common dolphin, the 2010-2013 model definition applied to the 2004 summer environ-
mental covariates predicted an abundance estimate that was less than 1% greater (not statistically different) than 
the previously reported 2004 abundance estimate when corrected for availability bias (Table 4). The previously 
reported 2004 estimate15 was produced from only data collected by shipboard and aerial surveys during summer 
of 2004. Even though the species distribution patterns detected during the surveys between summer 2004 and 
spring 2014 were quite different, the predicted habitat suitability maps matched the common dolphin sightings 
distribution recorded for both seasons and years (Fig. 4). Further indications of model fit are found in Palka 
et al.14 where the results from the goodness-of-fit tests of each the modelling steps are provided. In addition 
visual comparisons of the predicted seasonal density maps and locations of historical sightings since 1970 from 
OBIS-SEAMAP16 are also provided.

Discussion
Federal agencies like U.S. Department of Energy, National Marine Fisheries Service, U.S. Fish and Wildlife 
Service, BOEM, and U.S. NAVY and other ocean developers require information from a diverse suite of top-
ics such as density/abundance, distribution, stock structure, life history, behaviour, habitat use, environmental 
drivers, impact assessment and spatial modelling to support their mandates. Habitat models and model outputs 
presented in this paper provide some of the background information need by those agencies for spatial planning 
and conservation purposes and are available in a user friendly interface as a part of the AMAPPS model viewer 
at www.nefsc.noaa.gov/AMAPPSviewer. First, we will discuss the development of the models, and then compare 
these models to other developed in the same general region, then finally potential uses of the model results.

Figure 3.  Examples of the partial effect of latitude on the changes in abundance relative to its mean for 
common dolphin (CODO), Atlantic spotted dolphin (ASDO), humpback whale (HUWH), minke whale 
(MIWH), fin whale (SEWH), Sowerby’s beaked whale (SBWH) and Cuvier’s beaked whale (CBWH).
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Partial regression smooth plots of the animal density in relation to SST and latitude generated by the models 
are in agreement with the current knowledge of the species distributions17,18. Despite model uncertainty, the 
robustness validation supported the predictive inferences of the models tested and expanded the potential appli-
cation to detect species shifts in response to habitat changes. Though the amount of deviance explained is com-
parable to similar studies, improved deviance explained may be possible if additional physical and biological 
environmental covariates were included, such as fronts due to temperature, salinity and primary productivity, and 
densities of forage fish or other potential prey species.

One important assumption about regression type models, like those presented in this document, is that the 
models assume the link between animal density and habitat factors have consistent statistical relationships within 
the spatial-temporal variables included in the model. Given this assumption, it is then possible to predict the aver-
age density in locations or time periods where surveys did not actually occur19. However, if those proxies are una-
ble to detect changes in the underlying ecological processes through time and space, then those assumptions are 
no longer valid. This means that a causal or mechanistic relationship is not explicitly assumed. Consequentially, 
the type of model used in this document provides an average pattern of the habitat suitability and abundance.

Comparison with previous studies in the region.  This effort is not the first of its kind for the western 
North Atlantic waters. The evolution of the theoretical and computational improvements related to modelling 
animal density is evident by the past and present efforts that have used line transect sightings data collected by the 
NEFSC and SEFSC. Hamazaki17 used multiple logistic regression to model the presence/absence of sightings from 
1990–1996 with oceanographic and topographic variables to predict habitat maps. The U.S. Department of the 
Navy20,21 used sightings data from 1998–2005 in generalized additive density surface models to predict the density 
in a prediction grid, where g(0) was assumed to be one. The habitat suitability maps and abundance estimates 
presented in this document were generated with additional data that were not used in previous studies, and built 
upon past efforts. Most recently Roberts et al.11 used data from 1992–2014 to develop habitat-based climatological 

Species Spring (Mar- May) Summer (Jun-Aug) Fall (Sep-Nov)

Atlantic spotted dolphin 65,948 (0.16) 54,731 (0.15) 56,372 (0.16)

Beaked whale, Cuvier’s 3,425 (0.3)

Beaked whale, Sowerby’s 676 (0.38)

Beaked whale group 6,523 (0.17)

Common bottlenose dolphin* 111,729 (0.38) 138,728 (0.37) 104,993 (0.24)

Fin whale 3,817 (0.15) 4,718 (0.13) 4,514 (0.12)

Harbour porpoise (spring) 30,126 (0.2)

Harbour porpoise (summer) 83,250 (0.18)

Harbour porpoise (fall) 17,943 (0.49)

Humpback whale 1,510 (0.23) 1,246 (0.17) 1,399 (0.17)

Dwarf/Pygmy sperm whale group 10,632 (0.18)

Minke whale 1,484 (0.57) 2,834 (0.25) 2,829 (0.25)

Short/Long-finned pilot whale group 26,441 (0.4) 24,670 (0.3) 29,559 (0.3)

Risso’s dolphin 12,759 (0.21) 36,785 (0.2) 29,093 (0.21)

Sei whale 4,500 (0.42) 1,244 (0.47) 1,176 (0.48)

Common dolphin 111,042 (0.22) 118,697 (0.21) 183,510 (0.19)

Sperm whale 4,766 (0.33) 3,667 (0.14) 3,557 (0.15)

Striped dolphin 81,512 (0.12)

White-sided dolphin 47,371 (0.49) 42,985 (0.46) 44,277 (0.39)

Table 3.  Average seasonal abundance estimates derived from the 2010–2013 habitat models with its associated 
coefficient of variation in parenthesis. These estimates were previously reported in Palka et al.14.

Source Survey Season Nbest ABC* CNbest CV

Garrison et al.55 Shipboard Jun-Aug 30,196 1.00 30,196 0.54

Palka et al.56 Shipboard Jun-Aug 35,263 1.00 35,263 0.50

Palka et al.56 Aerial Jun-Aug 55,284 0.93 59,445 0.24

SAR 200515 (sum of the above) 124,904 0.23

Habitat model** 126,009 0.10

Table 4.  Robustness validation results of the common dolphin model. Common dolphin abundance estimates 
for 2004 by platform and the abundance estimate derived from the habitat model which includes the availability 
bias correction. Nbest = Abundance estimate; ABC = Availability bias correction factor; CNbest = Abundance 
estimate corrected for availability bias; CV = Coefficient of variation. *Palka et al.14. **2010–2013 model 
definition, with June to August 2004 sea surface temperature data.
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density maps and abundance estimates, where g(0) was not assumed to be one; though none of the data used in 
the current paper were used in the Roberts et al.11 models. In all of these efforts, the modelling approaches used 
the best available data and make logical assumptions and decisions.

Though making a direct comparison between these studies is a complex task, it is important to establish some 
of the fundamental differences between Roberts et al.11 and the present paper which include: (A) Differences in 
spatial and temporal coverage: most of the data used to develop the Roberts et al.11 models used data that were 
collected mostly from 1995 to 2009 (though there are some data from some species up to 2014) and did not 
include the data used in this paper, in addition the data were from surveys ranging from the US Pacific to Europe 
collected by multiple organizations and methods. In contrast, the models developed in this paper only use data 
from the area of interest. (B) Differences in analysis strategies and methods: to standardize all surveys used in 
Roberts et al.11 it was necessary to restrict data collected by only one sighting team per platform. Consequently, 
to correct for perception and availability bias, when local information was not available, it was necessary to apply 
correction factors from surveys conducted in the Pacific Ocean, Eastern Atlantic and Gulf of Mexico, which may 
result in unrepresentative corrections because of differences between the survey methods and animal’s behaviour. 
Finally, the current analyses also accounted for availability bias by estimating species-specific correction factors, 
some of which were estimated from recently tagged animals within the study area14. Another difference was the 
way the covariates were processed. For example, Robert’s developed climatological covariates which were a mean 
from 1995 to 2014 for a specific time period, say 8-days. In contrast, in the current paper the covariates were an 
average over a time period (8-days) from only the same year as the sighting observation. And (C) difference in 
presentation: average annual and monthly density-surface maps and abundances were presented in Roberts et 
al.11, in contrast to average seasonal estimates and the habitat suitability for the species presented in this study. 
In general, the average annual estimates from Roberts et al.11 are the most different from the seasonal estimates 
presented in this document for species that migrate out of US waters during some parts of the year, or for species 
that changed their seasonal spatial distribution patterns over the last two decades.

In summary, the two observer teams approach used in the present study that includes data from only the area 
of interest allowed the estimation of the perception bias correction from the same data that was used to calculate 
the density estimates thus resulting in regionally more representative and current abundance estimates and hab-
itat suitability maps.

Example applications of the habitat models.  Society has increasing demands for energy production 
triggering the development of renewable energy areas on the outer continental shelf, currently reaching a total 
of 16,149 km2 from Massachusetts to Florida. These areas have a significant overlap with MMPA strategic dol-
phins and ESA whale species’ habitats and the level of interaction was documented and quantified by the models 
(Supplementary Table S4 and Figs S1 to S17). For example, even though most of the waters in the potential renew-
able energy areas are shallow and close to the shore, the models for pilot whales, Risso’s dolphins, white sided 
dolphins, common dolphins and Atlantic spotted dolphins identified the deeper offshore regions of the potential 
renewable energy areas as part of their preferred habitat. Interestingly, the model for sperm whales, which are 
generally considered deep water animals, predicted very low abundance at the farthest offshore regions of the 

Figure 4.  Robustness validation results of the common dolphin habitat model. Habitat suitability for (A) 
summer 2004; and (B) spring 2014 overlapped with the actual species sightings for the correspondent season 
and year. These sightings were not included in the habitat model development.

https://doi.org/10.1038/s41598-019-42288-6
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potential renewable energy areas that were either close to the shelf break or extended into deeper waters like those 
in Massachusetts/Rhode Island and North Carolina and this has been confirmed by recorded sightings14.

There was a spatial difference in diversity patterns associated with latitude, in which the northern areas were 
more diverse in comparison to the southern areas. For example, the Massachusetts/Rhode Island area is located 
in a region with the highest species richness and showed the highest estimated abundance of ESA whale species 
(humpback, fin, sei and sperm whales) for all seasons. In addition the diversity index changed seasonally driven 
by animal migration (Supplementary Table S4). In the rest of the renewable areas the habitats become suitable 
for these species only during spring when the whales migrate through. In the case of MMPA strategic dolphins 
(harbour porpoises, white-sided dolphins, common dolphins, long/short finned pilot whales and common bottle-
nose dolphin), Massachusetts/Rhode Island, New Jersey and North Carolina/South Carolina showed the highest 
abundance estimates with similar spatial diversity patterns.

Changes in key physical and biological oceanographic features can alter marine ecosystems and atmospheric 
patterns. For example, in the Gulf of Maine spatial shifts of species assemblages associated with shallower, warmer 
waters tended to shift towards waters with cooler temperatures, while species assemblages associated with rela-
tively cooler and deeper waters shifted deeper, but with little latitudinal change. Species assemblages associated 
with warmer and shallower water on the broad, shallow continental shelf from the Mid-Atlantic Bight to Georges 
Bank shifted strongly northeast along latitudinal gradients with little change in depth22. Habitat-based cetacean 
models such as those developed here will be able to be used to explore the potential changes in the distribution 
and abundance of cetaceans relative to the changes to the physical and biological changes.

It is clear that the effects on the movement and extent of species assemblages will hold important implications 
for management, mitigation and adaptation on these waters. The models and maps presented in this document 
provide a recent habitat characterization of the species discussed, and based on the assumptions and the predic-
tive nature, have the potential to support management decisions and conservation measures in a marine spatial 
planning context.

Methods
Study area.  The study area ranged from Halifax, Nova Scotia, Canada to the southern tip of Florida; from the 
coastline to slightly beyond the US exclusive economic zone and covers approximately 1,193,320 km2 (Fig. 1). It 
was subdivided into 10 × 10 km cells and sampled during 16 Atlantic Marine Assessment Program for Protected 
Species (AMAPPS) surveys, using NOAA Twin Otter aircrafts in coastal regions and NOAA ships Henry B. 
Bigelow by the Northeast Fisheries Science Center (NEFSC), and Gordon Gunter by the Southeast Fisheries 
Science Center (SEFSC) in offshore regions. These surveys covered approximately 103,995 km of line-transect 
survey effort during July 2010 to August 2013 (Supplementary Table S1). Habitat suitability models were built for 
14 species and 3 species guilds (Table 1).

Habitat predictors.  Habitat predictors included a suite of static physiographic data and dynamic environ-
mental covariates and were obtained from ETOPO1 1-min global relief data23, AVISO+24, the Hybrid Coordinate 
Ocean Model (HYCOM)25, and from NOAA’s Environmental Research Division Data Access Program 
(ERDDAP)26 website (Supplementary Table 3). The environmental data were downloaded from the source using 
a bounding box whose extent covered the study area, and subsequently processed using custom code developed in 
R (v. 3.1.1)27 with the R packages “raster” (v 2.5-2)28, “ncdf ” (v 1.6.8)29, “rgdal” (v 1.1-6)30, “RNetCDF” (v 1.8-2)31, 
“lubridate” (v 1.5.3)32, “RODBC” (v 1.3–10)33 and “geosphere” (v 1.5–1)34. The process included a re-sampling 
of the data to the geographical midpoint of each 10 × 10 km stratum using oblique Mercator grid with bilinear 
interpolation. When possible, the data were obtained for dynamic covariates on an 8-day basis. Alternatively, 
daily images were downloaded and spatially synced to the cells and averaged into 8-day periods. In case of cells 
with missing values, a simple interpolation process was applied using the mean from the nearest-neighbour cells, 
and if needed the mean from the 8-day period before and after.

Distance Analysis.  Samples for modelling animal density were created by dividing the AMAPPS continuous 
survey effort into the 10 × 10 km cells. Species-specific information related to the number of sightings and group 
size was assigned to each cell. In addition, average sea state and glare within each cell was included as a continu-
ous predictor variable to account for sighting conditions encountered on the surveyed track lines. Line-transect 
sightings parameter estimates derived from the surveys were based on effort in Beaufort Sea states from 0 through 
435, because the probability of detection decreases as the sea states increases36,37.

The density estimates were based on the independent observer approach assuming point independence38, 
calculated using the mark-recapture distance sampling (MRDS) with the computer program Distance (version 
6.2)39, for each sampled 10 × 10 km cell using a Horvitz-Thompson-like estimator40. With this approach there was 
no need to independently model group size and the error due to extrapolation was minimized. To capture sighta-
bility differences between observation platforms and regions, data collected by each aircraft and ship from SEFSC 
and NEFSC surveys were analysed independently due to the differences in observers, data collection methods 
and habitats surveyed. A traditional MRDS distance analysis was used for the data collected by the shipboard sur-
veys35. Data collected by the aerial surveys were analysed using a two-step process as described by Palka et al.14.

Significant covariates were chosen following the method suggested by Marques & Buckland41 and Laake 
& Borchers38. For all of the analyses, the detection probabilities were estimated using right truncated perpen-
dicular distances as suggested in Buckland et al.42 and model selection was based on the goodness-of-fit using 
the AIC score (Akaike Information Criterion)43, Chi- squared test, Kolmogorov-Smirnov goodness-of-fit test, 
Cramer-von Mises goodness-of-fit test and a visual inspection of the fit, the results of these test are available in 
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Palka et al.14. The estimated sighting probability included an estimation of g(0) which is the probability of detect-
ing an animal on the survey track line.

To ensure sufficient sample sizes to accurately estimate model parameters, several similar species were pooled 
when needed. The criteria used to define species guilds included shape of the species’ detection functions, gen-
eral animal behaviour, perceived sightability of the species, and sample size. The estimated global parameters 
were applied to the values of the covariates associated with each species in the species group to account for 
species-specific detection functions. An overall species-specific abundance estimate was then calculated for each 
cells/time period and corrected for species-specific availability bias by platform, as described in Palka et al.14. 
The availability bias correction was based on the probability of an animal being detectable at the surface during 
a survey, and took into consideration the species diving and aggregation behaviours, in addition to the amount 
of time the observer had to analyse any spot of water from each of the survey platforms. This correction tended 
to be larger for aerial surveys than for shipboard surveys, and larger for long diving species than for short diving 
species.

Modelling.  Generalized Additive Models (GAM)44 were developed in R (v. 3.1.1)27 using the package “mgcv” 
(v.1.8–6)45. The density estimates for each species/group in sampled cells by the shipboard and aerial surveys were 
defined as the response variable. The parameter estimates were optimized using restricted maximum likelihood 
criterion and the data were assumed to follow an overdispersed Tweedie distribution46 with null space penaliza-
tion and thin plate splines with shrinkage47. Further, to avoid overfitting that could render parameter estimates 
difficult to interpret biologically, the maximum number of degrees of freedom was limited to 4. Correlations 
among environmental covariates ranged from 0.01–0.80 in absolute values. Although “mgcv” is considered to be 
robust to such correlations45, variables in a highly correlated pair above r = 0.60, were not used together in the 
same model.

Variable selection was performed with automatic term selection48 and a suite of diagnostic tests as proposed 
by Kinlan et al.49 and Barlow et al.50. Models with the lowest overall prediction errors and the highest percentage 
of deviance explained were selected for further diagnostic testing which included k-fold cross-validation with 
25 random data subsets. K-fold cross-validation methods, in contrast to the method where data are partitioned 
into separate training and test sets, have the advantage of deriving a more accurate model, especially in cases with 
limited sample sizes51, such as in this study.

The relative importance of each term of the final model was estimated by calculating the terms’ approxi-
mate deviance explained following the process described by Whitlock et al.52. Briefly, this process involves fitting 
a sequence of models to obtain the deviance of the full model, null model and reduced models in which one 
smooth term was removed at a time, while retaining the other parameter estimates from the full model constant. 
Deviance explained (DE) for each term i was then calculated with the Eq. (1):

=





− 




DE D D
D (1)

i
i reduced model Full model

null model

where D is the deviance for a model, and Di reduced model is a model where variable i is omitted.
Following model selection and validation for each of the species, the 2010–2013 average modelled seasonal 

(spring, summer and fall) abundance estimates for all cells in the study area were used to generate habitat suita-
bility maps using QGIS (v. 2.10)53.

The habitat suitability (HS) was assumed to be directly correlated with the species’ abundance and distribu-
tion. That is, in times and regions with the greatest estimated abundance it was assumed that the habitat was the 
most suitable for the species, then using the Eq. (2):

∑= HS N
(2)i

n

i

where Ni was the seasonal estimated abundance for each cell from the species-specific model. The seasonal abun-
dance estimates were calculated by summing the mean predicted abundance of each cell, and the uncertainty 
estimates reflect only the uncertainty in the GAM parameter estimates.

Abundance estimates for smaller scale regions within study area that are being considered for development of 
offshore renewable energy were also summarized. In some cases it was needed to merge several wind energy lease 
areas/wind planning areas together when the areas were relatively small and close together. In addition a buffer 
zone was added around all areas in an attempt to designate a generic area in which an animal may be exposed 
to due to construction/operation activities within the renewable energy area. The size of an appropriate buffer 
is dependent on a variety of factors including species-specific factors, such as natural short-term foraging and 
movement patterns which could then influence the animal’s response and sensitivity to the activity. In addition, 
the types of activities being undertaken in the offshore renewable energy area, and the physical topography and 
oceanographic features have a direct impact on the sound level and propagation. However, for simplicity in this 
study, offshore wind energy areas in addition to 10 km buffer zone is referred to as renewable energy areas and is 
reflected in the abundance estimates.

Robustness validation of the habitat models was investigated in two ways. First the 2010–2013 model parame-
ters were applied to the spring 2014 environmental data, the resulting predicted habitat suitability was compared 
with the actual spring 2014 sightings locations from the AMAPPS surveys. From the species included in this doc-
ument, only common dolphin, Risso’s dolphin, common bottlenose dolphin, short/long-finned pilot whale, fin 
whale, humpback whale and sperm whale were detected during the surveys, thus only the habitat models of these 
species were included in the comparison. The second way was by hindcasting the 2010–2013 models by using the 
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summer 2004 environmental data. But given the quality of the environmental data needed for the models were 
not readily available for the entire study area for 2004, the test was restricted to the common dolphin model. Thus, 
the modelled output was compared to not only the summer 2004 sightings locations from a NEFSC abundance 
survey but also the abundance estimate reported in the 2005 Stock Assessment Report15 that was derived from 
the NEFSC 2004 summer abundance survey data. The work presented in this document conforms to accepted 
international ethical standards.

Data Availability
The datasets generated during the current study are available at https://inport.nmfs.noaa.gov/inport/item/23306 
under “Distribution information”.
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